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LETTER TO THE EDITOR 

Collective diffusion of lattice gases in disordered lattices in 
the absence of a single-particle diffusion coefficient 

T Wichmann, K G Wan& and K W Kehr 
lnstitut far Feslkbrperfonchung, Forschungszentrum lillich, Postfach 1913. 52425 Jiilich. 
Germany 

Received 25 January 1994 

Abstract Collective diffusion of panicles is sNdied in a three-dimensional lattice-gas model 
with site-ekrgy disorder. The distribution of the site energies is exponential. and the diffusion 
coefficient of independent panicles may vanish. It is demonstrated by numerical simulations thal 
a coefficient of collective diffusion exists. An estimate of the diffusion coefficient far smaller 
panicle concentrations suggests a power-law dependence on concentration, consistent with the 
simulations. An effective-medium calculation of the coefficient of collective diffusion gives 
good agreement with the data at smaller panicle concentrations and rough agreement at larger 
concentrations. 

The comprehension of diffusion of many particles in disordered systems is an important 
task and has many applications, e.g. for transport in amorphous substances. It is also a 
challenging theoretical problem in view of the correlations which arise from the exclusion 
of double occupancy of sites [l, 21. These correlation effects are particularly pronounced in 
disordered systems. Consequently, the diffusion of many particles in disordered systems is 
not yet well understood [3]. In contrast, the major aspects of the diffusion of independent 
particles in disordered systems are understood [ G I .  Disordered systems may exhibit the 
interesting phenomenon of anomalous diffusion, for instance subdiffusive behaviour of the 
mean-square displacement of particles. In this note we investigate a disordered system 
with random site energies with an exponential distribution of the energies. If thermal 
activation of the particles is required for diffusion, the well known consequences of this 
model are anomalous diffusion of independent particles and dispersive transport at lower 
temperatures. We will demonstrate that in this situation collective diffusion still exists 
although the diffusion coefficient of independent particles vanishes. 

The underlying idea is quite simple. Particles are present in the system at a given 
average concentration. In equilibrium, the particles will saturate the sites with lower 
energies: these sites are responsible for the anomalous effects in the independent-particle 
diffusivity. If then a density variation of small amplitude is created in the system, the density 
disturbance will decay diffusively. This will be confirmed by numerical simulations below, 
and the coefficient of collective diffusion will be estimated at various particle concentrations. 
It is more difficult to derive theoretically the coefficient of collective diffusion for this 
situation, We will first present an estimate of the coefficient of collective diffusion, which 
applies to smaller particle concentrations. For larger concentrations we can only give some 
qualitative arguments for the observed behaviour. We then perform an effective-medium 
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calculation where we use symmetrized mean-field single-particle transition rates. This 
approximation gives good agreement at lower particle concentrations and fair agreement 
at larger concentrations. 

The model that we study in this letter is the random site-energy model, with the 
distribution of site energies 

P ( E ) = - e x p  (f) - E G O .  
a 

The parameter a determines the width of the distribution. We assume that the transition 
rates to neighbouring sites are solely determined by the site energies (site symmetry of the 
rates) and are given by an Arrhenius law, 

r ( E ; )  = r,exp(Ei/kBT) Ei < 0. (2) 
Here E, is the energy of site i, which is chosen from the distribution (1). In  the computer 
simulations ro will be taken to be unity and the energy will be measured in units of keT, 
From (1) and (2) follows a power-law distribution of the transition rates, 

with the parameter (Y = ksT/a .  The diffusion coefficient of independent particles in the 
random site-energy model is given, in arbitrary dimensions, by the inverse of the inverse 
first moment of the transition rates, if it exists [4]. An immediate consequence of (3) is that 
this diffusion coefficient vanishes for (Y < 1. For CY < 1, the mean-square displacement of 
the particles shows subdiffusive behaviour with [5, 71 

( r 2 ( r ) )  - r*’dv (4) 
and the random-walk exponent 

We have verified this behaviour by some numerical simulations. 
If particles with a concentration c are filled into the system, they occupy the sites in 

equilibrium according to Fermi-Dirac statistics. That is, the occupation probability of a site 
with energy E is given by 

where p = l /kBT and 11 is the chemical potential. The chemical potential is determined 
for given c from the implicit relation 

0 

c = [_dE P(E)f(E). (7) 

To study collective diffusion, we prepare the system in a way that represents, on a 
hydrodynamic scale, a constant density plus a cosine profile in the x direction, 

c(x)  = T + 6c cos(kx) (8) 

dimensional simple-cubic lattice and randomly assign energies to the sites, taken from 
where k = 2x/A and A is the wavelength of the density disturbance. We use a three- 

the exponential distribution (1). We then put particles on the y r  planes with occupation 
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Figure 1. Coefficient of collective diffusion as a function of particle concentration. Symbols. 
numerical dam: curves, results of the effectivemedium theory Results are given for the 
panmeters (I = 1.43(0). 1.0(+). 0.667(0). O.S(x). and 0.333(A). 

probabilities according to (8). For equilibration we let particles jump in the y and z directions 
before beginning with the investigation of the decay of the cosine profile. 

The dynamics of the system is the usual lattice-gas dynamics and it is performed with 
the transition rates that are specified in (1) and (2). We use the vectorized computer code 
that was developed in [8 ] .  If the decay of the density profile is governed by the diffusion 
equation, the amplitude 6c decays as exp(-D,,&*t) and one can extract a coefficient of 
collective diffusion. We observe an exponential decay on the time-scale resolved by our 
method and hence we can deduce diffusion coefficients from our data. Only in the case of 
small 01 and c do we get deviations from the exponential decay. The results are presented 
in figure 1 for various particle concentrations and several values of the parameter a. For 
small concentrations, the diffusion coefficient approaches the correct value for 01 > 1, and it 
seems to approach 0 for 01 6 1, consistent with theory. The diffusion coefficient increases 
strongly with c. for 01 < 1, and reaches a roughly constant value at larger concentrations. 

We now try to understand qualitatively the behaviour of the coefficient of collective 
diffusion in the model with an exponential distribution of site energies. The essential point 
is that sites with lower energy are saturated by particles that do not participate in the 
diffusion process. We assume that at smaller particle concentrations diffusion is effected by 
single particles which visit sites with energies E larger than a characteristic cut-off energy 
E'. To estimate the cut-off energy E' we postulate that for a given concenmtion c all sites 
with energies E < E' are filled, 

This means that we neglect the thermal broadening of the site occupation probabilities in 
the determination of E'. The cut-off energy E' is then given by 

E* = U In(c). 

Since only a small fraction of the particles will promote diffusion, we can identify the 
coefficient of collective diffusion with the diffusion coefficient of independent particles, 



L266 Letter to the Editor 
10 

- 
Y 1 e 
W 
.rl 

"4 
ly 
P) 

.2 0.1 

0.01 

.A 0.001 g 
z 
:: 0.0001 w 

0 

8 le-05 

le-OK 

.+ 

CI 

0.001 0.01 0.1 1 
log(concentrati0n) 

Figure 2. CoeMcien! of collective diffusion as a function of panicle concentration in double- 
logarithmic representalion. Symbols, numericd daw, brokea cuwcs. estimate of (12); full curves, 
effectivemedium theory. The parameter values are the same as in figure 1. 

The integral is performed using ( I )  and (2) and the result is 

For small c we have approximately 

D,,,!] ro(u-' - I)de-'-') 

that is, a power-law dependence on the concentration. In figure 2 we have plotted the results 
of (12) in a doubly logarithmic presentation, together with the simulation data. The estimate 
is consistent with the data, although more numerical data are needed to really confirm, for 
instance, the power-law dependence of (13). The result is that (12) diverges in the limit 
c 4 I ,  where the underlying ideas of the estimate do not apply. 

At larger particle concentrations, a majority of the sites is occupied and we cannot invoke 
the picture of diffusion of a few particles in a more or less complete lattice. We tentatively 
assume that we can identify an effective activation energy E" solely from the distribution 
of the site energies, without considering any effects of the occupancy of sites. The idea 
behind this assumption is that collective diffusion is independent of particle concentration 
in the lanice gas with uniform transition rates. We hence assume that E" is determined 
from 

(14) 

with a fixed fraction of states U. The resulting activation energy is 

E" = U In(u). (15) 
If the result is used in the Arrhenius expression for the transition rate, we have 

r** = (u)~/Q. (16) 
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If we identify Dc0ll with r**, we observe rough agreement with the data for particle 
concentrations in the plateau region when we choose U = f .  However, there are deviations 
of up to 20 percent which demonstrate the roughness of the argument. 

We now give an effective-medium theory (EMT) for the collective diffusivity for our 
problem. To use the formalism of EMT, the many-particle problem has to be reduced to 
a one-particle problem. In a recent letter [9] mean-field one-particle transition rates were 
introduced by a factorization of the two-particle correlations and the diffusion coefficient 
was evaluated by first-passage time methods. While this formulation is appropriate for 
the one-dimensional case, the application of the EMT requires symmetric transition rates. 
Symmetrized one-particle rates have already been introduced by Gartner and Pitis [2].  and 
we will use their formulation subsequently. The symmetrized transition rates are obtained 
by multiplying ri with the Fermi-Dirac occupation factors 

We use the EMT in the single-bond approximation which was developed by Webman 
[IO]. The self-consistency condition established by him reads in the static limit 

where [ 1 indicates the average over the disorder, i.e. over the distribution of the rates 
W. w is the effective transition rate which has to be determined from (18) and W is 
the symmetric single-bond transition rate. To ensure proper normalization, the resulting 
diffusivity has to be divided by the mean value 

(19) (Q21 = ( f ( 1  - f)]. 
The EMT result in d = 1 is w-] = {W-'] and D = W/{a*], in agreement with the 

results in [2, 91, which were obtained by different methods. We evaluate (18) in d = 3 
by implementing the disorder average as a numerical integral and by varying until the 
equation is satisfied. The resulting EMT diffusion coefficient is presented in figure I .  One 
recognizes rather good agreement with the simulations at smaller particle concentrations. 
Note that the EMT result also agrees with the estimate of the diffusion coefficient at small 
concentrations. At larger particle concentrations, there are differences between the EMT 
result and the simulation data, but the general behaviour is still satisfactory. 

A possible source of the discrepancy between the EMT result and the numerical 
simulations at larger concentrations is the possibility that the simulations may not detect 
the asymptotic decay of the density disturbance. If the density disturbance initially decays 
faster, a larger diffusion coefficient would be observed in the simulations. Such problems 
did arise at smaller c, but not at larger c. Gartner and Pitis [2] emphasize that the mean- 
field approximation, that is the reduction of the many-particle problem to a singlepanicle 
problem, gives an upper limit for the diffusion coefficient. Here we observe larger values 
than the theoretical result. However, in our derivations two approximations are made, 
namely the mean-field approximation combined with the effective-medium approximation. 
Further, when one of the sites in the symmetric rate equation (17) already has a very low 
energy, the transition rate becomes very small. This may lead to an underestimate of the 
diffusion coefficient by the EMT. 

In conclusion we have demonstrated that collective diffusion can exist in a situation 
where no coefficient of independent-particle diffusion exists. 'Ihe effect is due to the 
saturation'of the sites with low energies by particles. The particles participating in the 
diffusion process have to circumvent the immobile particles, apparently in dimension. d > 2 
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they can achieve this. A paper that will present the EMT results in more detail  and for o ther  
distibutions of sile energies and dimensions is in preparation [ I  11. 
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